Con este análisis será más fácil el diagnóstico y atención de casos de Covid-19
La Clínica Universidad de Navarra, en España, colabora en un estudio multicéntrico internacional para crear un algoritmo de inteligencia artificial capaz de establecer la extensión del daño pulmonar provocado por el coronavirus y diferenciarlo del de una neumonía convencional.
Liderado por Siemens Healthineers, y junto a otros seis hospitales europeos y americanos, han iniciado este proyecto en el que recogen y analizan los datos radiológicos obtenidos de tomografías computarizadas (TC) de tórax de pacientes sospechosos o positivos de Covid-19.
Al respecto, el codirector del Servicio de Radiología de la Clínica Universidad, Gorka Bastarrika, apunta que “el estudio radiológico es de gran utilidad para realizar el diagnóstico y para evaluar las complicaciones”.
El software, facilitado por Siemens Healthineers y entrenado con estudios de TC proporcionados por los siete centros hospitalarios participantes, analiza de forma automática las exploraciones, segmenta el pulmón para diferenciar los lóbulos pulmonares y analiza el porcentaje de tejido pulmonar afectado.
“La neumonía por coronavirus se caracteriza por una afectación tenue y difusa que suele predominar en la periferia de los pulmones. En la neumonía convencional se suele observar una consolidación que puede ocupar uno o más lóbulos pulmonares”, aclara el especialista.
La implementación de esta herramienta, una vez aprobada, va a tener un gran impacto en el diagnóstico de los pacientes, de manera que se podrá actuar con mayor rapidez ante posibles repuntes u oleadas del virus en el futuro.
Contenido relacionado:
AFG