Estos datos podrían ayudar a centrar su atención en las mutaciones que parecen tener efectos más significativos en la infectividad del virus
Un estudio de genómica comparativa ha permitido generar el mapa genético más preciso y completo del virus SARS-CoV-2.
Hecho por investigadores del Instituto de Tecnología de Massachusetts (MIT) y publicado en la revista Nature Communications, el estudio ha confirmado varios genes codificadores de proteínas y ha descubierto que otros, que se habían propuesto como genes, no codificaban ninguna proteína.
En una segunda parte del estudio, el equipo de investigación también analizó cerca de 2 mil mutaciones que han surgido en el SARS-CoV-2 desde el inicio de la pandemia, lo que les permitió evaluar la importancia que pueden tener esas mutaciones y su capacidad para evadir el sistema inmunitario o volverse más infeccioso.
Se sabía que, con casi 30 mil bases de ARN, el genoma del SARS-CoV-2 tiene varias regiones que codifican genes de proteínas y otras de las que había sospechas pero no se habían clasificado definitivamente.
Para determinar qué partes del genoma del SARS-CoV-2 contiene realmente genes, los investigadores recurrieron a la genómica comparativa, y compararon el SARS-CoV-2 (que pertenece a un subgénero de virus llamado Sarbecovirus, que infecta a los murciélagos) con el SARS-CoV (que causó el brote de SARS de 2003) y 42 cepas de sarbecovirus de murciélagos.
Así, confirmaron seis genes codificadores de proteínas en el genoma del SARS-CoV-2, además de los cinco que están bien establecidos en todos los coronavirus.
También determinaron que la región que codifica un gen llamado ORF3a también codifica un gen adicional, el ORF3c, que tiene bases de ARN que se solapan con el ORF3a, pero que están en un marco de lectura diferente, algo raro en los genomas grandes, pero común en muchos virus y que, en el caso del SARS-CoV-2, aún no se sabe qué función tiene.
Los investigadores también demostraron que otras cinco regiones que se habían propuesto como posibles genes no codifican proteínas funcionales, y descartaron que queden otros por descubrir.
Además, los autores vieron que muchos trabajos anteriores utilizaban no solo conjuntos de genes incorrectos, sino también, a veces, nombres contradictorios, por lo que, en un artículo paralelo publicado recientemente en la revista Virology, presentaron unas recomendaciones para nombrar los genes del SARS-CoV-2.
También podría interesarte: SARS-CoV-2 podría “ser atraído” por grupo sanguíneo
Adicionalmente, en el estudio, los investigadores analizaron más de mil 800 mutaciones que han surgido en el SARS-CoV-2 y descubrieron que, en la mayoría de los casos, los genes que evolucionaban rápidamente antes de la pandemia han seguido haciéndolo, y los que tendían a evolucionar lentamente han mantenido esa tendencia.
Asimismo, analizaron las mutaciones que han surgido en variantes preocupantes, como la variante británica, la de Brasil y la de Sudáfrica y observaron que muchas de las mutaciones que hacen que esas variantes sean más peligrosas se encuentran en la proteína de la espiga, que ayuda al virus a propagarse con rapidez y a evitar el sistema inmunitario.
Sin embargo, cada una de esas variantes tiene “más de 20 mutaciones más, y es importante saber cuáles de ellas pueden hacer algo y cuáles no”, advierte Irwin Jungreis, autor principal del estudio e investigador del MIT.
Para los autores estos datos podrían ayudar a otros científicos a centrar su atención en las mutaciones que parecen tener efectos más significativos en la infectividad del virus.
Contenido relacionado:
¿Por qué es muy difícil reinfectarse por SARS-CoV-2?
CAB